Seminar

Institute for Plasma Research

Title:	MOF-derived Transition Metal Compounds as Anode Materials
	for All-Solid-State Lithium-Ion Batteries
Speaker:	Dr. Yogita Dahiya
	Malaviya National Institute of Technology, Jaipur
Date:	29 th November 2024 (Friday)
Time:	03.30 PM
Venue:	Seminar Hall, IPR

Abstract

All-solid-state lithium-ion batteries (ASSLIBs) are viable alternatives to commercialized LIBs owing to their higher safety and better energy density. Herein, we have prepared Metal-Organic Framework (MOF)-derived transition metal phosphides & chalcogenides (TMPs & TMCs) as anode materials to achieve high capacity, long cyclability, and superior rate performance. For this, MOFs, including ZIF-67 cubes, ZIF-67 polyhedrons, and Fe-imidazole framework (Fe-MOF), were realized using facile chemical synthesis procedures, and they were then used as main precursors to create the sophisticated active materials by heat-treatment methods. LiBH4 has been employed as a solid-state electrolyte in all the tests conducted in half-cell assemblies.

The investigations began with ZIF-67-based cobalt telluride particles surrounded with in-situ generated Ndoped cubic carbon network (CoTe/NC) and polyhedron cobalt phosphide (Co₂P@NCF) nanocomposites. The Li-storage mechanism investigations of the prepared composite are revealed using ex-situ XRD and XPS techniques. The electrodes demonstrated conversion-cum-alloying mechanism during the first discharge scan, where CoTe and Co₂P formed Li₂Te and Li₃P upon lithiation, respectively. Meanwhile, the cobalt converts into the metallic Co and becomes redox inactive afterward. During the charging scan, the final lithiated products Li₂Te and Li₃P eventually convert into Te and LiP, respectively. Co₂P@NCF delivered a higher initial discharging capacity of 1705 mAh/g than its telluride counterparts which provided 1124.7 mAh/g at a current density of 100 μ A. CoTe/NC also demonstrated excellent rate performance with ~ 92.3 % capacity retention after fast charging at various scan rates.

Motivated by the satisfactory performance of Co₂P@NCF, we continued exploring its cost-effective and environmentally friendly alternative, i.e., Fe-MOF-derived Fe₂P@NC nanocomposites. The composite anode delivered excellent initial discharging/charging capacities of 1214.8 mAh/g and 1367.01 mAh/g, respectively, at a current density of 100 μ A. For Fe₂P, ex-situ XRD and XPS results also pointed out the formation of Li₃P and Fe in the first discharging cycle. Like Co₂P@NCF, in subsequent cycles, the reversible reaction Li₃P \leftrightarrow LiP is found to be responsible for generating reversible capacities. The carefully evaluated electrochemical performance of MOF-based anodes with LiBH4 electrolyte in ASSLIB indicates the profound possibilities of utilizing MOF-derived anode materials as futuristic anode materials for ASSLIB applications.